

Globus Data Grid Protocols and Services

Ann Chervenak, USC/ISI
Ian Foster, ANL
Carl Kesselman, USC/ISI
Steve Tuecke, ANL

The Problem

"Enable a geographically distributed community [of thousands] to perform sophisticated, computationally intensive analyses on Petabytes of data"

Example Application Scenarios

- Climate community
 - Sharing, remote access to and analysis of Terascale climate model datasets
- GriPhyN (Grid Physics Network)
 - Petascale Virtual Data Grids
- Distance visualization
 - Remote navigation through large datasets,
 with local and/or remote computing

the globus project www.globus.org

Data Intensive Issues Include ...

- Harness [potentially large numbers of] data, storage, network resources located in distinct administrative domains
- Respect local and global policies governing what can be used for what
- Schedule resources efficiently, again subject to local and global constraints
- Achieve high performance, with respect to both speed and reliability
- Catalog software and virtual data

Computing and Grids

- The term "Data Grid" is often used
 - Unfortunate as it implies a distinct infrastructure, which it isn't; but easy to say
- Data-intensive computing shares numerous requirements with collaboration, instrumentation, computation, ...
- Important to exploit commonalities as very unlikely that multiple infrastructures can be maintained
- Fortunately this seems easy to do!

Examples of Desired Data Grid Functionality

- High-speed, reliable access to remote data
- Automated discovery of "best" copy of data
- Manage replication to improve performance
- Co-schedule compute, storage, network
- "Transparency" wrt delivered performance
- Enforce access control on data
- Allow representation of "global" resource allocation policies

Central Q: How must Grid architecture be extended to support these functions?

Grid Protocols, Services, Tools: Enabling Sharing in Virtual Organizations

- Protocol-mediated access to resources
 - Mask local heterogeneities
 - Extensible to allow for advanced features
 - Negotiate multi-domain security, policy
 - "Grid-enabled" resources speak protocols
 - Multiple implementations are possible
- Broad deployment of protocols facilitates creation of <u>Services</u> that provide integrated view of distributed resources
- <u>Tools</u> use protocols and services to enable specific classes of applications

the globus project www.globus.org

Data Grid" Architecture Elements

APPLICATIONS

Task mgmt (Condor-G)

Data request management

· • C

Caching

Virtual Data

Reliable replication

Replica selection

Attribute-based lookup

Location cataloging

Metadata cataloging

Virtual Data cataloging

Enquiry (LDAP)
Access (GRAM)

CPU

CPU resource manager Enquiry (LDAP) Access (???)

Stor age

Storage resource manager

• • •

the globus project www.globus.org

The Globus Data Grid Services

Two major components:

1. Data Transport and Access

- Common protocol
 - Secure, efficient, flexible, extensible data movement
- Family of tools supporting this protocol

2. Replica Management Architecture

- Simple scheme for managing:
 - multiple copies of files
 - collections of files

APIs, white papers: http://www.globus.org

Data Access Protocol

- Existing distributed data storage systems
 - DPSS, HPSS: focus on high-performance access, utilize parallel data transfer, striping
 - DFS: focus on high-volume usage, dataset replication, local caching
 - SRB: connects heterogeneous data collections, uniform client interface, metadata queries
- Problems
 - Incompatible protocols
 - > Each require custom client
 - > Partitions available data sets and storage devices
 - Each protocol has subset of desired functionality

Data Access Protocol

- Common, extensible transfer protocol
- Decouple low-level data transfer mechanisms from the storage service
- Advantages:
 - New, specialized storage systems are automatically compatible with existing systems
 - Existing systems have richer data transfer functionality
- Interface to many storage systems
 - HPSS, DPSS, file systems
 - Plan for SRB integration

Common Data Access Protocol and Storage Resource Managers

- Grid encompasses "dumb" & "smart" storage
- All support base functionality
 - "Put" and "get" as essential mechanisms
 - Integrated security mechanisms, of course
- Storage Resource Managers can enhance functionality of selected storage systems
 - E.g., progress, reservation, queuing, striping
 - Plays a role exactly analogous to "Compute Resource Manager"
- Common protocol means all can interoperate

And the Universal Protocol is ... Grid-FTP

• Why FTP?

- Ubiquity enables interoperation with many commodity tools
- Already supports many desired features, easily extended to support others
- Well understood and supported
- We use the term Grid-FTP to refer to
 - Transfer protocol which meets requirements
 - Family of tools which implement the protocol
- Note Grid-FTP > FTP
- Note that despite name, Grid-FTP is not restricted to file transfer!

Grid-FTP: Basic Approach

- FTP is defined by several IETF RFCs
- Start with most commonly used subset
 - Standard FTP: get/put etc., 3rd-party transfer
- Implement standard but often unused features
 - GSS binding, extended directory listing, simple restart
- Extend in various ways, while preserving interoperability with existing servers
 - Striped/parallel data channels, partial file, automatic & manual TCP buffer setting, progress monitoring, extended restart

The Grid-FTP Family of Tools

- Patches to existing FTP code
 - GSI-enabled versions of existing FTP client and server, for high-quality production code
- Custom-developed libraries
 - Implement full GSI-FTP protocol, targeting custom use, high-performance
- Custom-developed tools
 - Servers and clients with specialized functionality and performance

Replica Management

- Maintain a mapping between <u>logical names</u> for files and collections and one or more <u>physical locations</u>
- Important for many applications
 - Example: CERN HLT data
 - > Multiple petabytes of data per year
 - > Copy of everything at CERN (Tier 0)
 - > Subsets at national centers (Tier 1)
 - > Smaller regional centers (Tier 2)
 - > Individual researchers will have copies

Management

- Identify <u>replica cataloging</u> and <u>reliable</u> <u>replication</u> as two fundamental services
 - Layer on other Grid services: GSI, transport, information service
 - Use LDAP as catalog format and protocol, for consistency
 - Use as a building block for other tools
- Advantage

the globus project

These services can be used in a wide variety of situations

Replica Manager Components

- Replica catalog definition
 - LDAP object classes for representing logicalto-physical mappings in an LDAP catalog
- Low-level <u>replica catalog</u> API
 - globus_replica_catalog library
 - Manipulates replica catalog: add, delete, etc.
- High-level <u>reliable replication</u> API
 - globus_replica_manager library
 - Combines calls to file transfer operations and calls to low-level API functions: create, destroy, etc.

Replica Catalog Structure: A Climate Modeling Example

nfs/v6/climate

pub/pcmdi

A Model Architecture for Data Grids

the globus project

www.globus.org

the globus project www.globus.org

Relationship to Metadata Catalogs

- Metadata services describe data contents
 - Have defined a simple set of object classes
- Must support a variety of metadata catalogs
 - MCAT being one important example
 - Others include LDAP catalogs, HDF
- Community metadata catalogs
 - Agree on set of attributes
 - Produce names needed by replica catalog:
 - > Logical collection name
 - >Logical file name

Globus and SRB: Integration Plan

FTP access to SRB-managed collections

the globus project

SRB access to Grid-enabled storage systems

Status

- Grid FTP and catalog management API and tools in alpha test
- Demonstration applications with climate data
- SRB/Globus data grid services integration underway
- Replica Management API under design
- Grid based access control strategy under design